A COST-DRIVEN DESIGN METHODOLOGY FOR ADDITIVE MANUFACTURED VARIABLE PLATFORMS IN PRODUCT FAMILIES

Official ASME Group

Journal of Mechanical Design

The ASME Journal of Mechanical Design (JMD) serves the broad design community as a venue for scholarly, archival research in all aspects of the design activity.
Edit Post Mode
Cancel

Enter the date that this post should be published.

Are you sure?

Are you sure you want to delete this file? This action is irreversible.

  • A COST-DRIVEN DESIGN METHODOLOGY FOR ADDITIVE MANUFACTURED VARIABLE PLATFORMS IN PRODUCT FAMILIES

    ​ 
    Additive manufacturing (AM) techniques provide designers with greater freedom in creating customized products with complex shapes. When major design changes are made to a part, undesirable high cost increments may be incurred due to AM process setting adjustments, challenging designers to explore AM-enabled design freedom while controlling costs at the same time. In this research, we introduce the concept of a variable product platform and its associated AM process setting platform, based on which the design and process setting adjustments can be restricted within a bounded feasible space in order to limit cost increments. Fuzzy Time-Driven Activity-Based Costing (FTDABC) approach is introduced to predict AM production costs based on process settings. The process setting adjustment’s feasible space boundary is identified by solving a multiobjective optimization problem. Design parameter limitations are computed in a Mamdani-type expert system and then used as constraints in the design optimization to maximize customer perceived utility. Case studies on designing an R/C racing car family illustrate the proposed methodology and demonstrate that the optimized additive manufactured variable platforms can improve product performances at lower costs than conventional consistent platform based design.
    Picture
    For the complete article please see ASME's Digital Collection.
Please log in to comment

Comments (0)

Your comment has been posted.   Close
Thank you, your comment requires moderation so it may take a while to appear.   Close
Your avatar